skip to main content


Search for: All records

Creators/Authors contains: "Rao, Raghuveer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Annotating automatic target recognition images is challenging; for example, sometimes there is labeled data in the source domain but no labeled data in the target domain. Therefore, it is essential to construct an optimal target domain classifier using the labeled information of the source domain images. For this purpose, we propose a transductive transfer learning (TTL) network consisting of an unpaired domain translation network, a pretrained source domain classifier, and a gradually constructed target domain classifier. We delve into the unpaired domain translation network, which simultaneously optimizes cycle consistency and modulated noise contrastive losses (MoNCE). Furthermore, the proposed hybrid CUT module integrated into the TTL network generates synthetic negative patches by noisy features mixup, and all the negative patches provide modulated weight into the NCE loss by considering similarity to the query. Apart from that, this hybrid CUT network considers query selection by entropy-based attention to specifying domain variants and invariant regions. The extensive analysis depicted that the proposed transductive network can successfully annotate civilian, military vehicles, and ship targets into the three benchmark ATR datasets. We further demonstrate the importance of each component of the TTL network through extensive ablation studies into the DSIAC dataset. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios. 
    more » « less